

P a g e 1 | 22

EXPERIMENT 4

XOR and XNOR Gates with

Applications

OBJECTIVES:

 Examining the characteristics of XOR and XNOR gates.

 Demonstrate applications of XOR and XNOR gates

 Learn to use the VHDL approach to combinational logic design.

MATERIALS:

 Xilinx Vivado software, student or professional edition V2018.2 or higher.

 IBM or compatible computer with Pentium III or higher, 128 M-byte RAM or more, and 8

G-byte Or larger hard drive.

 BASYS 3 Board.

DISCUSSION:

So far we have studied five basic types of gates: AND, OR, NAND, NOR and NOT. In some applications,

it is convenient to use two other types of gates: XOR and XNOR. The XOR and XNOR gates have their

own symbols and unique characteristics. Common applications for XOR and XNOR gates are:

comparators, switchable inverter/buffers, parity generator/checkers and adder/subtractor. They can

also be used to simplify Boolean equations.

We will first discuss the properties of XOR and XNOR having two inputs.

Gate Characteristics:

1. The XOR Gate

P a g e 2 | 22

Symbol

Boolean Equation

Truth Table

For a 2-input XOR gate, the output is High when the inputs are unequal.

The output is Low when the inputs are equal. The Boolean equation for

a 2-input XOR gate can be abbreviated as:

However, the function definition remains the same.

P a g e 3 | 22

2. The XNOR Gate

Symbol

Boolean Equation

Truth Table

The output of an XNOR gate is the complement of that of a XOR. For a 2-input XNOR gate,

the output is Low when the inputs are unequal but High when the inputs are equal. The Boolean

equation for a 2-input XNOR gate can be written as:

The number of inputs for the XOR and XNOR gates can be two or more. The characteristics

of XOR and XNOR gates can be extended to three or more inputs. We will examine the

characteristics of 3-input XOR and XNOR gates.

PROCEDURE:

Section 1 XOR and XNOR characteristics:

P a g e 4 | 22

1. Open Xilinix Vivado.

2. In the Xilinx-Project Navigator window, Quick start, New Project.

3. Name the project.

4. Choose “RTL Project” and check the “Do not specify sources at this time” as we will

configure all the settings manually through the navigator from inside the project.

P a g e 5 | 22

5. Select New Source… and the New window appears. In the New window, choose

Schematic, type your file name (such as source_1) in the File Name editor box, click

on OK, and then click on the Next button.

P a g e 6 | 22

6. In the Xilinx - Project Navigator window, select the following

 Category: “General Purpose”

 Family: “Artix-7”

 Package: “cpg236”

 Speed: “-1”

 Choose “xc7a35tcpg236-1” that corresponds to the board we are using.

P a g e 7 | 22

Then Choose Finish.

P a g e 8 | 22

7. The Define Module Window that will appear, we will choose the input and output

labels for the gates under investigation in this experiment.

8. In the “source_1.vhd” created file, type the gates equivalent VHDL code for the XOR

and XNOR gates between the “begin” and “end Behavioral” as follows and then save

the file.

P a g e 9 | 22

9. Next, we need to add To add a constraint file with the”.xdc” extension, as following:

Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add

or create constraints”. Next, choose “Create File” and enter the file name “lab_2” then

“OK” followed by “Finish”.

10. Then, we need to get a template xdc file that is going to be edited according to the

different experiments. Google “basys 3 xdc file” and choose the “xilinix” link that

appears (https://www.xilinx.com/support/documentation/university/Vivado-

Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc).

Copy the whole file and paste it into the “lab_2.xdc” that you have just created in the

last step. Then uncomment and edit the input Switches and the output LEDs as in the

next step.

11. From the tool tab choose the play button and then “Run Implementation”.

Select ”Number of jobs” =1 and then press OK.

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc

P a g e 10 | 22

12. The implementation errors window will appear if any or the successfully

completed window. From this window select “Generate Bitstream” and then OK.

This will make the software generate “.bin” file to be used in programing the

hardware BAYAS 3.

13. The next window will appear in which choose “Open Hardware Manger”, connect

the Hardware Kit to the USB port and then press OK.

P a g e 11 | 22

14. A green tab will appear in the top of the Vivado window, from which choose

“open target” to program the hardware.

15. From the window appears, select the “.bin” file from the Project you

create by browsing for the generated “.bit file” under the “.runs” folder and program

the board then press OK.

16. Fill in the following truth tables for all the gates by observing the inputs/outputs

on the programmed board.

A. XOR Gate

Truth Table (1)

A

B

C

X

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

Symbol

Boolean Equation

P a g e 12 | 22

B. XNOR Gate

Truth Table (2)

A

B

C

Y

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

17. Verify that the experimental results are consistent with the Discussion.

Checked by____________________________ Date ___________

Symbol

Boolean Equation

P a g e 13 | 22

Section 2 XOR gates used in a comparator:

1. Repeat section 1 from step 1 to 6.

2. The Define Module Window that will appear, we will choose the input and output labels

for the gates under investigation in this experiment.

3. In the “source_1.vhd” created file, type the gates equivalent VHDL code for the XOR

and XNOR gates between the “begin” and “end Behavioral” as follows and then save the

file.

P a g e 14 | 22

4. Next, we need to add To add a constraint file with the”.xdc” extension, as following:

Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add

or create constraints”. Next, choose “Create File” and enter the file name “lab_2” then

“OK” followed by “Finish”.

P a g e 15 | 22

5. Then, we need to get a template xdc file that is going to be edited according to the different

experiments. Google “basys 3 xdc file” and choose the “xilinix” link that appears

(https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-

Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc). Copy the whole file

and paste it into the “lab_2.xdc” that you have just created in the last step. Then uncomment

and edit the input Switches and the output LEDs as in the next step.

6. From the tool tab choose the play button and then “Run Implementation”. Select

”Number of jobs” =1 and then press OK.

7. The implementation errors window will appear if any or the successfully completed

window. From this window select “Generate Bitstream” and then OK. This will make the

software generate “.bin” file to be used in programing the hardware BAYAS 3.

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc

P a g e 16 | 22

8. The next window will appear in which choose “Open Hardware Manger”, connect the

Hardware Kit to the USB port and then press OK.

9. A green tab will appear in the top of the Vivado window, from which choose “open

target” to program the hardware.

P a g e 17 | 22

10. From the window appears, select the “.bin” file from the Project you create

by browsing for the generated “.bit file” under the “.runs” folder and program the board

then press OK.

11. Fill in the following truth tables for all the gates by observing the inputs/outputs on the

programmed board.

P a g e 18 | 22

Truth Table

12. Summarize the results on your own words.

Checked by____________________________ Date ___________

Section 3: XNOR gates used as buffers and inverters.

If you examine the truth table of an XNOR gate carefully, you will notice an interesting fact: when

input A is held Low, the output is the complement of input B. When input A is kept High, the

output follows input B. This effect means that the XNOR gate can be used to construct a

buffer/inverter circuit. What we have to do is use one of the inputs as the control signal and the

other input as the data signal. The XNOR will act like a buffer when the control signal is high, but

as an inverter when the control signal is pulled Low. Here we will build a 4-bit buffer/inverter

circuit and then run a simulation to verify the result.

1. Repeat section 1 from step 1 to 6.

P a g e 19 | 22

2. The Define Module Window that will appear, we will choose the input and output

labels for the gates under investigation in this experiment.

3. In the “source_1.vhd” created file, type the gates equivalent VHDL code for the gates

between the “begin” and “end Behavioral” as follows and then save the file.

P a g e 20 | 22

4. Next, we need to add To add a constraint file with the”.xdc” extension, as following:

Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add

or create constraints”. Next, choose “Create File” and enter the file name “lab_2” then

“OK” followed by “Finish”.

5. Repeat section 1 from step 10 to 15.

6. Fill in the following truth tables for all the gates by observing the inputs/outputs on

the programmed board.

P a g e 21 | 22

7. Summarize the results on your own words.

Checked by____________________________ Date ___________

Truth Table

P a g e 22 | 22

Questions:

1.) A 3-input XOR gate is equivalent to the circuit shown below: ABCX

The Boolean equation can be written as:

Or it simply denoted as:

Using only AND, OR and inverter gates to implement the above Boolean equation,

how many gates are needed? Draw the logic diagram. Compare the savings of a

single XOR gate implementation with the circuit you just drew.

2.) How can you use a 2-input XOR gate to function as a 1-bit buffer/inverter?

Draw the logic diagram. Show the logic connections for the control and data

input lines.

