EXPERIMENT 4

XOR and XNOR Gates with
Applications

OBJECTIVES:

e Examining the characteristics of XOR and XNOR gates.
e Demonstrate applications of XOR and XNOR gates
e Learn to use the VHDL approach to combinational logic design.

MATERIALS:

e Xilinx Vivado software, student or professional edition VV2018.2 or higher.

e IBM or compatible computer with Pentium 111 or higher, 128 M-byte RAM or more, and 8
G-byte Or larger hard drive.

e BASYS 3 Board.

DISCUSSION:

So far we have studied five basic types of gates: AND, OR, NAND, NOR and NOT. In some applications,
it is convenient to use two other types of gates: XOR and XNOR. The XOR and XNOR gates have their
own symbols and unique characteristics. Common applications for XOR and XNOR gates are:
comparators, switchable inverter/buffers, parity generator/checkers and adder/subtractor. They can
also be used to simplify Boolean equations.

We will first discuss the properties of XOR and XNOR having two inputs.

Gate Characteristics:

1. The XOR Gate

1122

X=A'B +AB’ A B X
X
X=ADB 0 0 0
0]]
1 0 1
]] 0

For a 2-input XOR gate, the output is High when the inputs are unequal.
The output is Low when the inputs are equal. The Boolean equation for
a 2-input XOR gate can be abbreviated as:

X=AODB

However, the function definition remains the same.

Page 2122

2. The XNOR Gate

ADY Y =A’B’ +AB A B y
i 0 0 I
0 l 0
I 0 0
I l I

The output of an XNOR gate is the complement of that of a XOR. For a 2-input XNOR gate,
the output is Low when the inputs are unequal but High when the inputs are equal. The Boolean
equation for a 2-input XNOR gate can be written as:

Y=A®B

The number of inputs for the XOR and XNOR gates can be two or more. The characteristics
of XOR and XNOR gates can be extended to three or more inputs. We will examine the
characteristics of 3-input XOR and XNOR gates.

PROCEDURE:

Section 1 XOR and XNOR characteristics:

Page 31|22

1. Open Xilinix Vivado.

4 Vivado 20182 - & %
Ble Flow Iools ndow Help

VIVADO' & XILINX.

HLx Edtions

Rocent Projocts.

Quick Start projec

Create Project >

Open Project >

Open Example Project >

Tasks

Manage 1P >
Open Hardware Manager >
Xilinx Tdl Store >

Learning Center

Documentation and Tutorials >
Quick Take Videos >
Release Notes Guide >

2. Inthe Xilinx-Project Navigator window, Quick start, New Project.
3. Name the project.

4. Choose “RTL Project” and check the “Do not specify sources at this time” as we will
configure all the settings manually through the navigator from inside the project.

F lew Projec =

Project Type
Specify the type of project to create. '

- RTL Project
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this time

Postsynthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation.

WO Planning Project
Do not specify design sources. You will be able to view part’package resources.

Imported Project
Create a Vivado project fram a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado project from a predefined template.

O
b
o
o

I
[

Page 422

5. Select New Source... and the New window appears. In the New window, choose
Schematic, type your file name (such as source_1) in the File Name editor box, click

on OK, and then click on the Next button.

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new source

file on disk and add it to your project. You can also add and create sources later.

=+,
Use Add Files, Add Directories or Create File buttons below
Add Files | | Add Directories | | Create File
Target language: WHDL - Simulator language: WHDL -
P

Create a new source file and add it to your
project.
Eile type: @ vHDL

File name: source_1

File location: | « =Local to Project=

Py

Cancel

[

Cancel

Page 5] 22

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new source '
file on disk and add it to your project. You can also add and create sources later

=+,
Index Mame Library HDL Source For Location
[] 1 source_ 1.vhd xil__defaultlib Synthesis & Simulation - =L ocal to Project=
Add Files | | Add Directories | | Create File
Target language: WHDL e Simulator language: YHDL ~

(9)
S
A
]
[}
0
x
s
i
Y

Cancel

Add Constraints (optional)

Specify or create constraint files for physical and timing constraints '
=+,
Use Add Files or Create File buttons below
Add Files | | Create File

|/_\|
A\
)
(]
[}
0
x
A
5
v

Cancel

6. In the Xilinx - Project Navigator window, select the following
e Category: “General Purpose”

e Family: “Artix-7”

e Package: “cpg236”

e Speed: “-1”

e Choose “xc7a35tcpg236-1” that corresponds to the board we are using.

Page 6122

Then Choose Finish.

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. '

Reset All Filters

Category: | General Purpose - Package: cpg236 - Temperature: | | -
Family: Artin-7 ~ Speed: -1L -
Search: xc¥a3bticpg “~* | {1 match}
Part IO Pin Count Available 10OBs LUT Elements FlipFlops Block RAMs Ultra RAMs DSPs GE
®CTa35ticpg236-1L 236 106 20800 41600 50] a0 2
< >

'
N
n
1o
w
[z}
=

Cancel

V|V D p MNew Project Summary
HLx Editions
€ Anew RTL project named "project will be created.

) 1 source file will be added.

Mo constraints files will be added. Use Add Sources to add them later.

@ The default part and product family for the new project:
Default Part: xc7a35ticpg236-1L
Product: Artix-7
Family: Artix-7
Package: cpg236
Speed Grade: 1L

i: XILINX To create the project, click Finish

)

)

Page 722

[T 5 T R (5 T L R LS T 5 8

WowowoW W

mn

Woww

Lo I R I R R R SR

LI C

mn

1 o

W L RFE D nom

1 o

{1 VT S T N Y o

15]

7. The Define Module Window that will appear, we will choose the input and output
labels for the gates under investigation in this experiment.

¢ Define Module =

Define a module and specify /O Ports to add to your source file.

For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked. '
Ports with blank names will not be written.

Module Definition
Entity name: ex_4

Architecture name: Behavioral

'O Port Definitions

+ - t

Fort Mame Direction Bus MsB LsSB
A in N

B in el

c in ~

x out N

A out N

I‘r——\l
(=) oK Cancel

8. In the “source_1.vhd” created file, type the gates equivalent VHDL code for the XOR
and XNOR gates between the “begin” and “end Behavioral” as follows and then save
the file.

likrary IEEE;?
use IEEE.STD LOGIC 1164.ATIL.7

Fort (R : in STD LOWGIC)
B in STD LOGIC;
C @ in STD LOGIC:
X : out S5TD LOGIC;

¥ @ out STD LOWEIC) -
end ex 47

architecturse Behawvioral of ex 4 is

begin
M= B Hor B xoxr Cr

Y¢= not (R XOR B XOR C);
ernd B-Ehavinral:l

Page 8122

9. Next, we need to add To add a constraint file with the”.xdc” extension, as following:
Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add
or create constraints”. Next, choose “Create File”” and enter the file name “lab 2” then
“OK” followed by “Finish”.

10. Then, we need to get a template xdc file that is going to be edited according to the
different experiments. Google “basys 3 xdc file” and choose the “xilinix” link that
appears (https://www.xilinx.com/support/documentation/university/Vivado-
Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3 _Master.xdc).
Copy the whole file and paste it into the “lab_2.xdc” that you have just created in the
last step. Then uncomment and edit the input Switches and the output LEDs as in the
next step.

12 . get property PRCERGE_PIN V17 [get ports [A]]
13 set property IOSTANDRRD LWCMOS33 [get ports [A]]
14 . set property PRCKRGE _PIN V16 [get ports [EB}]
15 set property IOSTANDRRD LVCMOI33 [get ports [Bl]
16 , set property PACKRGE PIN W1é [get ports {C]l]
17 set property IOSTRNDARD LWCMO333 [get ports [C]]

17 | set property PRCERGE PIN Tle [get ports [X}]
48 set property IOSTRANDARRD LWVCMO3I33 [get ports {[X]]
19 , set property PARCKRGE PIN E13 [get ports [Y¥}]
50 . get property IOSTRNDARD LWCMO333 [get ports [Y]]

11. From the tool tab choose the play button > and then “Run Implementation”.
Select "Number of jobs” =1 and then press OK.

Launch Runs =

Launch the selected synthesis orimplementation runs.

Launch directory: | e« =Default Launch Directory= hd
Options
Launch runs on local hostt Wumber of jobs: | 1 e

Generate scripts only

Don't show this dialog again

Page 9122

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc

12. The implementation errors window will appear if any or the successfully
completed window. From this window select “Generate Bitstream” and then OK.

This will make the software generate “.bin” file to be used in programing the
hardware BAYAS 3.

Implermentation Completed X

o Implementation successfully completed.
Next

Qpen Implemented Design
@ Generate Bitstream

View Reports

Dont show this dialog again

13. The next window will appear in which choose “Open Hardware Manger”, connect
the Hardware Kit to the USB port and then press OK.

o Bitstream Generation successfully completed.
Hext

Open Implemented Ciesign
View Reports
Open Hardware Manager

Generate Memory Configuration File

Dont show this dialog again

e T

Page 10|22

14. A green tab will appear in the top of the Vivado window, from which choose
“open target” to program the hardware.

15. From the window appears, select the “.bin” file from the Project you

create by browsing for the generated “.bit file” under the “.runs” folder and program
the board then press OK.

16. Fill in the following truth tables for all the gates by observing the inputs/outputs
on the programmed board.

A. XOR Gate

Truth Table (1)

Symbol
0 0
0 1
1 0
Boolean Equation
1 1
0 0
0 1
1 0
1 1

Page 11|22

B. XNOR Gate

Truth Table (2)

Symbol
0 0 0
0 0 1
0 1 0
Boolean Equation
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

17. Verify that the experimental results are consistent with the Discussion.

Checked by Date

Page 12|22

Section 2 XOR gates used in a comparator:

1. Repeat section 1 from step 1 to 6.
2. The Define Module Window that will appear, we will choose the input and output labels

for the gates under investigation in this experiment.

¢ Define Module

Define a module and specify /O Ports to add to your source file.

For each port specified:
M3SB and LSB values will be ignored unless its Bus column is checked. '

Puaorts with blank names will not be written.

Module Definition
Entity name: ex

Architecture name: Behavioral

110 Port Definitions

+

PortMame Direction Bus MSB LSB
A in w | 3 0
B in w | 3 0
X out o

()
2 (0] 4 Cancel

3. Inthe “source 1.vhd” created file, type the gates equivalent VHDL code for the XOR
and XNOR gates between the “begin” and “end Behavioral” as follows and then save the

file.

Page 13|22

library IEEE;
use IEEE.STD LOGIC 1184 .ATT.;

entity ex is
Fort (A : in STD LOGIC WVECTOR (3 downto 0);
E : in STD LOGIC WECTOR (3 downto 07
¥ : out STD LOGIC);

end ex;

architecture Behavioral of ex is
begin

¥ <= NOT ((&({0) HCOR B{(0)) CR {B{1) HCOR B{1l)) OR (RA{2) XOR B{2))0R (R([3) XOR B(3)))»
end Behavioral:r

4. Next, we need to add To add a constraint file with the”.xdc” extension, as following:
Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add
or create constraints”. Next, choose “Create File” and enter the file name “lab_2” then
“OK” followed by “Finish”.

11 ##F Switches

12 set property PACEAGE FPIN V17 [get ports [A[0]]]

13 set property IOSTANDARD TVCMOS33 [get ports {[A[0]1]]
14 set property PACKAGE FIN W1é [get ports {[A[1]1]}]

15 set property IOSTANDARD LVCMOS33 [get ports [R[1]]]
16 set property PARCKAGE PIN Wlé [get ports {A[Z2]}]

17 set property IOSTANDARD LVCMOS33 [get ports [A[2]1]]
128 set property PACEKAGE_FIN W17 [get ports [A[3]1}]

19 set property IOSTANDARD LVCMOS33 [get_ports [A[3]]]
20 set property PACKAGE PIN W15 [get _ports {B[0]]}]

21 set property IOSTRWNDARD LVCMOS33 [get ports [{B[0]]]
22 set _property PRCERGE _PIN W15 [get_ports [B[1]11]

23 set property IOSTANDARRD TVCMOS33 [get ports {[{B[1l]1]
24 set property PACEAGE FPIN W1l4 [get ports [B[2]1]]

25 set property IOSTANDARD TVCMOS33 [get ports [B[2]1]]
26 set property PACKAGE FPIN W13 [get ports {[{B[3]1]]

27 set property IOSTANDARD LVCMOS33 [get ports [B[3]1]

set property FACKAGE_PIN Uls [get ports {[X}]
set property ICSTANDARRD LVWOMOS33 [get ports [X]]

Page 14|22

5. Then, we need to get a template xdc file that is going to be edited according to the different
experiments. Google “basys 3 xdc file” and choose the “xilinix” link that appears
(https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL -
Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc). Copy the whole file
and paste it into the “lab_2.xdc” that you have just created in the last step. Then uncomment
and edit the input Switches and the output LEDs as in the next step.

6. From the tool tab choose the play button > and then “Run Implementation”. Select
“Number of jobs” =1 and then press OK.

Launch Runs =

Launch the selected synthesis orimplementation runs. ' _

Options
#® Launch runs on local host: Mumber of jobs: | 1 o

Generate scripts only

Dont show this dialog again

7. The implementation errors window will appear if any or the successfully completed
window. From this window select “Generate Bitstream” and then OK. This will make the
software generate “.bin” file to be used in programing the hardware BAYAS 3.

Page 15122

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc

Implementation Completed *

o Implementation successfully completed.
Hext

Open Implemented Design
@ Generate Bitstream

View Reports

Daont show this dialog again

8. The next window will appear in which choose “Open Hardware Manger”, connect the
Hardware Kit to the USB port and then press OK.

o Bitstream Generation successfully completed.
Hext

Open Implemented Ciesign
View Reports
Open Hardware Manager

Generate Memory Configuration File

Dont show this dialog again

e T

9. A green tab will appear in the top of the Vivado window, from which choose “open
target” to program the hardware.

Page 16|22

10. From the window appears, select the “.bin” file from the Project you create

by browsing for the generated “bit file” under the “.runs” folder and program the board
then press OK.

11. Fill in the following truth tables for all the gates by observing the inputs/outputs on the
programmed board.

Word A Word B Output
A0 Al A2 A3 B0 Bl B2 B3 X
0 l 1 0 l 0 0 l
1 0 1 0 l 0 l 0
0 0 1 1 l l 0 0
0 l 0 0 0 I 0 1
1 L 0 1 l l 0 1
0 0 0 0 0 0 0 0
0 l 1 1 0 I l l
1 l l 1 l I l 0
1 0 l 1 0 0 l l

17 | 22

Truth Table

12. Summarize the results on your own words.

Checked by Date
Section 3: XNOR gates used as buffers and inverters.

If you examine the truth table of an XNOR gate carefully, you will notice an interesting fact: when
input A is held Low, the output is the complement of input B. When input A is kept High, the
output follows input B. This effect means that the XNOR gate can be used to construct a
buffer/inverter circuit. What we have to do is use one of the inputs as the control signal and the
other input as the data signal. The XNOR will act like a buffer when the control signal is high, but
as an inverter when the control signal is pulled Low. Here we will build a 4-bit buffer/inverter
circuit and then run a simulation to verify the result.

1. Repeat section 1 from step 1 to 6.

18 | 22

2. The Define Module Window that will appear, we will choose the input and output
labels for the gates under investigation in this experiment.

¢ Define Module

Define a module and specify /O Ports to add to your source file.

For each port specified:
M3B and LSB values will be ignored unless its Bus column is checked. '
Parts with blank names will not be written.

Module Definition
Entity name: sec_ 3

Architecture name: Behavioral

'O Port Definitions

+ - 1t
Port Mame Direction Bus MSB LSB
D in | 3 0
Control in hedl

wt o~ @3 o
—

3. Inthe “source 1.vhd” created file, type the gates equivalent VHDL code for the gates
between the “begin” and “end Behavioral” as follows and then save the file.

Page 19122

| = L O BT S

T T % T S T L T 5 I
Kk}

e

[| L
o= L R =

1

likrary IEEE;
uze IEEE.STD LOGIC 1164.ALL;

entity sec_3 is
Bort {(D : in STD_LOGIC VECTOR (3 downto 0);
Controcl : in STD LOGIC;
¥ : out 5TD LOGIC VECTOR (3 downto O));

end sec_3;
architecture Behavioral of sec_3 is

kegin

X({0)«= Control XMOR D{0):
H({l)<= Control XMOR D{l}):
¥{2)<= Control HNOR D{2):

¥{3)«<= Control HNOR D{3):
end Behavioral;

4. Next, we need to add To add a constraint file with the”.xdc” extension, as following:
Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add
or create constraints”. Next, choose “Create File” and enter the file name “lab_2” then
“OK” followed by “Finish”.

5. Repeat section 1 from step 10 to 15.

6. Fill in the following truth tables for all the gates by observing the inputs/outputs on
the programmed board.

Page 20122

Truth Table

Outputs

Inputs
Control=0 Control=1

DO | DI | D2 | D3 | X0 | X1 | X2 | X3 | X0 | X1 | X2| X3

7. Summarize the results on your own words.

Checked by Date

21| 22

Questions:

1.) A 3-input XOR gate is equivalent to the circuit shown below: ascx

A
B X

The Boolean equation can be written as:
X=(A"B+ AB’)’C +(A’'B+AB")C’

Or it simply denoted as:
X=ADBDC

Using only AND, OR and inverter gates to implement the above Boolean equation,

how many gates are needed? Draw the logic diagram. Compare the savings of a
single XOR gate implementation with the circuit you just drew.

2.) How can you use a 2-input XOR gate to function as a 1-bit buffer/inverter?
Draw the logic diagram. Show the logic connections for the control and data
input lines.

22| 22

